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Abstract: Since EGR valve of diesel engine has a great 

influence on engine performance, this paper analyzed 

EGR valve body by CFD numerical simulation method, 

studied the flow field characteristics of EGR valve in the 

valve body under different valve lift, and studied the 

cooperative angle change rule of velocity field and 

temperature gradient field by applying multi-field 

coordination theory. The results showed that the exhaust 

gas passing through EGR reached the maximum air 

velocity and the lowest temperature after passing through 

the valve seat. The synergetic Angle varies in a wide 

range (4.5728°~89.936°) and the synergetic degree is 

between 7%-8%, indicating that the heat dissipation 

performance of the whole EGR region is good. 

 

Keywords: EGR; Multi-field collaboration; diesel engine 
 

1. Introduction 

Diesel engine has been widely used in automobile 

industry due to its advantages such as low fuel 

consumption, high torque output and good reliability 

[1,2]. However, due to its large emissions, serious 

environmental pollution, especially particles and NOx, as 

the main emissions of diesel engines, is the formation of 

"photochemical smog" the main substances, it must be 

effectively controlled [3]. Currently, diesel emission 

control technologies include DPF, SCR and different fuel 

injection modes [4-6]. However, these methods can no 

longer meet increasingly stringent emission standards, 

especially NOx emissions from diesel engines. Currently, 

the most effective measure to reduce NOx production is 

the exhaust gas recirculation system (EGR) [7,8]. It is a 

way of rejoining the combustion by introducing a portion 

of the exhaust from the engine into the intake manifold. 

As EGR has a direct impact on engine combustion and 

emission, the EGR rate used in different working 

conditions is different. Moreover, the use of EGR will 

lead to the increase of particulate (PM) and hydrocarbon 

(HC) emissions in different degrees [9-13], Therefore, the 

control goal of engine EGR system is to accurately 

control the EGR rate within a reasonable range [14,15]. 

The change of EGR rate is mainly guaranteed by the 

different opening of EGR valve. Therefore, EGR valve is 

an important component in the exhaust gas recirculation 

system, and its performance has a direct impact on the 

NOx emission of the engine [16-18]. Because the high 

temperature oxygen enrichment is the reason for NOx 

production, so can be controlled from the oxygen content 

of the intake, that is, through the exhaust throttle valve 

and EGR valve as the control input to establish an 

appropriate EGR rate to change the duty ratio, so as to 

reduce the maximum explosion pressure, avoid NOx high 

temperature oxygen enrichment conditions [19-22]. From 

these research statuses, the opening of EGR valve and the 

flow through the valve have a decisive influence on 

engine combustion and exhaust, so the simulation 

calculation of EGR valve flow channel fluid has research 

value [23-27]. In this paper, CFD numerical method is 

used to analyze the flow field characteristics of EGR 

valve of a certain type of engine under different opening 

degrees. Meanwhile, the synergistic Angle variation law 

of velocity field and temperature gradient field is studied 

by using the field coordination theory, so as to provide a 

theoretical basis for the subsequent performance 

improvement of EGR valve. 

2. Establishment and Verification of Computational 

Model 

2.1. The Geometric Model 

The object of this paper is an EGR valve driven by a 

stepper motor. Its basic structure is shown in Figure 1. Its 

EGR rate is controlled by the pulse signal of the stepping 

motor to push the opening size of the valve body 10. Its 

flow area can be approximately considered as the 

inverted cone as shown in Figure 2, and its geometric 

flow area is calculated as follows: 

1 2 1( ) / 2 cos ( sin 2 )
2

h
f h d d h d        (1) 

Where d1 is the small end diameter of the valve head; γ 

is the taper Angle of valve seal; h is the valve lift; the 

meanings of d2 and h′ are shown in Figure 2. 
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1 exhaust passage; 2 water cooling channels; 3 close the valve 

spring; 4 the stator coil; 5 the stator pole; 6 the rotor pole; 7 

motor shaft; 8 open the valve spring; 9 valve shaft; 10 the valve 

body 

Figure 1. EGR Control valve construction. 

d2

dh

d1

dv



h

h′

 
Figure 2. Schematic diagram of valve structure.  

  

The physical parameters of the exhaust gas flowing 

through EGR valve will change with different working 

conditions, but the change is small, so it can be ignored. 

Therefore, the physical parameters of exhaust emissions 

studied in this paper are shown in Table 1. 

Table 1. Physical parameters of engine emissions. 

T/K Cp/(kJ/kg•K) λ/( W/(m•k)) 

590 1.0306 0.0411 

2.2. The Establishment of Numerical Simulation Model 

The flow of high temperature exhaust gas in EGR 

valve can be regarded as turbulent flow of viscous 

incompressible fluid and heat exchange between viscous 

incompressible fluid and wall surface. The flow and heat 

transfer model include mass conservation equation, 

momentum conservation equation and energy 

conservation equation. 

Conservation of mass equation: 

0
t





 


U  (2) 

Where ρ is the density of the fluid, U is the velocity 

vector of the fluid. 

Momentum conservation equation: 

( )
( )

yii xi zi
i i

i

u p
div u F

t x x y z

  


  
      

    
U  (3) 

Where p is flow field pressure; ui(i=x, y, z) is the 

velocity component of the fluid; τxi (i=x, y, z) is the 

component of the viscous stress applied to the 

microelement body; Fi (i=x, y, z) is the component of the 

volume force. 

Energy conservation equation: 

 
  T

p

T P
div T div gradv S

t C y

 


  
       

U  (4) 

Where T is absolute temperature; λ is the thermal 

conductivity of the fluid; Cp is the specific heat capacity 

of the fluid; ST is the viscous dissipative term. 

Based on the geometric 3d model and flow and heat 

transfer calculation model, star-CCM+ fluid simulation 

software was used to analyze the flow field. The 

computational models were coupling flow model, 

coupling energy model and RNG k-ε model [28,29]; The 

entry condition is set as stagnation inlet, inlet pressure 

value is 120kpa, temperature is 590K, the exit condition 

is set as pressure outlet, outlet pressure value is 80kpa, 

temperature is 300K, turbulence is described by setting 

turbulence intensity and viscosity ratio, and its 

calculation method is determined by Equations (5) and (6) 

respectively [30-32]; Set the residual of the 

corresponding continuity equation as 1×10−4, the residual 

of the energy equation and the momentum equation as 

1×10−6 as the iteration termination criterion.  

 
2 2 2 1

80.16 ReD

avg

u v w
I

u

   
   (5) 

Where u′, v′, w′ is the velocity pulsation quantity, uavg 

is the average velocity, ReD is the Reynolds number 

calculated with hydraulic diameter as characteristic 

length. 
2

t
C k

 

 
  (6) 

Where Cμ is the empirical coefficient, A value of 0.09 

is usually assigned; k is the turbulent kinetic energy; ε is 

the dissipation rate of turbulent kinetic energy. 

The numerical simulation model of EGR valve at 

different valve lifts is shown in Figure 3. 

 
(a) Valve lift is 5mm 
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(b) Valve lift is 10mm 

 
(c) Valve lift is 15mm 

Figure 3. Numerical simulation models of different EGR valve 

lifts. 

2.3. Field Synergy Theory 

The field synergy principle with enhanced heat transfer 

technology is taught by Guo Zengyuan [33]. The theory 

of energy equation analysis for boundary layer type flows 

has been applied in many fields [34-39]. The theory holds 

that the heat transfer intensity at the convective heat 

transfer interface depends not only on the velocity field 

and the temperature gradient field itself, but also on the 

Angle between them. The heat transfer process can be 

regarded as a heat conduction process with an internal 

heat source, so its energy governing equation can be 

expressed as a formula (7) [40]: 

   pC u T dV T dV 
 

      (7) 

Where u  is the velocity vector; T  is temperature 

gradient; Ω is the calculation domain of fluid heat 

transfer. 

In formula (7), the dot product of the velocity vector 

and the temperature gradient vector can be expressed by 

formula (8). 

 cosu T u T     (8) 

Where θ is the included Angle between the velocity 

vector and the temperature gradient vector, namely, the 

cooperative Angle described in this paper. 

Therefore, for the 3-D model of EGR valve, the 

cooperative Angle of its velocity vector and temperature 

vector can be expressed as Formula (9). 
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(9) 

Where 
T
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, 
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
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T

z




 is temperature gradients in 

the x, y and z directions. 

In order to study the synergetic degree of convective 

heat transfer velocity vector field and temperature 

gradient field, Prof. Guo Zunyuan [41] introduced the 

concept of synergy coefficient, namely, the ratio of the 

cosine of the synergy Angle greater than 0.8 to the total 

flow field area λFSP as shown in Equation (10): 
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3. The Simulation Analysis 

3.1. Flow Field Simulation Analysis of EGR Valve 

The fluid flow simulation of EGR valve with lift of 

5mm, 10mm and 15mm established above obtained the 

corresponding velocity vector field and temperature field. 

The symmetrical center surface of EGR valve was taken 

as the auxiliary plane, and the velocity vector field and 

temperature field were respectively shown in Figure 4 

and Figure 5. 

 
(a) Valve lift is 5mm  

 
(b) Valve lift is 10mm 

 
(c) Valve lift is 15mm 

Figure 4. Velocity vector field of different EGR valves in lift. 

As can be seen from the velocity vector field in Figure 

4 under different valve lifts, the exhaust gas passing 

through EGR after passing through the valve seat can 
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reach more than 340m/s due to the narrow gap between 

the seat and the wall surface, and the velocity of flow 

field in different areas varies greatly. 

 
(a) Valve lift is 5mm 

 
(b) Valve lift is 10mm 

 
(c) Valve lift is 15mm 

Figure 5. Temperature field of EGR at different valve lifts. 

As can be seen from Figure 5, the temperature 

difference in the whole flow field area is around 60K, and 

the lowest temperature area appears behind the valve seat, 

which is due to the large gas velocity in this area and the 

loss of part of internal energy, which leads to a decrease 

in temperature. 

3.2. Co-simulation Analysis of EGR Valve Field 

By applying the conclusion of flow field analysis and 

equations (9) and (10) of field coordination theory, the 

velocity vector field and temperature gradient field in the 

flow field of EGR valve were simulated and analyzed, 

and the coordination Angle distribution diagram of 

symmetrical center surface in the flow field was obtained 

as shown in Figure 6. 

 
(a) Valve lift is 5mm 

 
(b) Valve lift is 10mm 

 
(c) Valve lift is 15mm 

Figure 6. Coordination Angle under different EGR valve lifts. 

From figure 6 of synergy Angle under different valve 

lift, you can see that the engine EGR valve internal field 

synergy Angle change is bigger, in point of smaller area 

of the flow field, the disturbance is larger, especially 

around the valve inlet and body, it shows that the cooling 

performance is good, these regions is beneficial to reduce 

the exhaust gas temperature can be rapidly after, thereby 

improving the performance of the EGR valve. The 

synergetic degree of the entire flow field region is 

analyzed according to Equation (10), and the results are 

shown in Table 2. 

Table 2. Results of the field synergy calculation. 

Valve lift /mm Synergy degree λFSP 

5 8.84% 

10 7.81% 

15 7.23% 

The statistical results in Table 2 show that the field 

coordination degree of the whole flow field region is 

between 7%-8%, maintaining a good heat transfer 

performance. 

4. Conclusions 
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In this paper, the flow field characteristics and multi-

field cooperative mechanism of EGR valve driven by 

stepping motor are analyzed, and numerical simulation 

models of EGR valve under different valve lifts are 

established to obtain the flow field characteristics and 

multi-field cooperative characteristics under different 

valve lifts. 

(1) Results can be obtained by the velocity field and 

temperature field: after an EGR after the exhaust valve 

seat, due to the seat and the wall of the narrow gap, 

maximum flow rate, at the same time, because of the 

large gas flow velocity in the region lost a part of that can 

lead to a drop in temperature, showing the area for the 

entire flow field area of minimum temperature zone. 

(2) The multi-field coordination results based on 

temperature gradient and velocity field show that the 

coordination Angle varies widely (4.5728°~89.936°) in 

the whole flow field region, and the coordination degree 

is between 7%-8%, indicating that the heat dissipation 

performance of the whole EGR region is better. 
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